Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.

نویسندگان

  • T Lindén
  • J Peetre
  • B Hahn-Hägerdal
چکیده

From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Acetic Acid on Growth and Ethanol Fermentation of Xylose Fermenting Yeast and Saccharomyces cerevisiae

Growth of some xylose fermenting yeasts, Candida shehatae, Pichia stipitis CBS5773, fusant F101 and fusant F198, was completely inhibited in xylose medium added with 0.5% v/v acetic acid which caused the reduction of pH to 4.1. Only one xylose fermenting strain, Pachysolen tannophilus NRRL-Y2460, showed relatively low growth and ethanol fermentation. However, in the medium added with 1.0% v/v a...

متن کامل

Isolation, identification and characterization of thermo-tolerant acetic acid bacteria for semi-continuous acetous fermentation at high temperature

Nowadays, vinegar is industrially produced by mesophilic acetic acid bacteria (AAB). However, temperature fluctuation during acetous fermentation is inevitable, and may cause process disturbances. This can be mostly avoided using thermo-tolerant AAB. The main purpose of the present study was to isolate thermo-tolerant AAB. Fermentation performances were then evaluated. Twenty-eight different is...

متن کامل

Characteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making

The objectives of this study were to clarify whether the wild yeast isolated from fruits and humus is suitable forbread making. Using colony PCR, assimilation of carbohydrate and 18S rRNA sequencing, seven strains fromamong 70 samples were identified as Saccharomyces cerevisiae. The ethanol and CO2 production by the 10-2 wild yeast strain were highest among the strains. The pH and utilized gluc...

متن کامل

Isolation, identification and characterization of thermo-tolerant acetic acid bacteria for semi-continuous acetous fermentation at high temperature

Nowadays, vinegar is industrially produced by mesophilic acetic acid bacteria (AAB). However, temperature fluctuation during acetous fermentation is inevitable, and may cause process disturbances. This can be mostly avoided using thermo-tolerant AAB. The main purpose of the present study was to isolate thermo-tolerant AAB. Fermentation performances were then evaluated. Twenty-eight different is...

متن کامل

Removal of Acetic Acid from Spent Sulfite Liquor Using Anion Exchange Resin for Effective Xylose Fermentation with Pichia stipitis

Acetic acid is one of the major inhibitors of spent sulfite liquor (SSL) fermentation for ethanol production. The objective of this study was to remove acetic acid from hardwood SSL using anion exchange resin in order to achieve effective fermentation with Pichia stipitis CBS6054. Lignosulfonate, as well as sulfate and sulfite ions in the SSL hindered the removal of acetic acid by anion exchang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 58 5  شماره 

صفحات  -

تاریخ انتشار 1992